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We analyze the statistics of an estimator, denoted byjt and referred to as the slave, for the equilibrium
susceptibility of a one dimensional Langevin processxt in a potentialfsxd. The susceptibility can be measured
by evolving the slave equation in conjunction with the original Langevin process. This procedure yields a
direct estimate of the susceptibility and avoids the need, when performing numerical simulations, to include
applied external fields explicitly. The success of the method, however, depends on the statistical properties of
the slave estimator. The joint probability density function forxt and jt is analyzed. In the case where the
potential of the system has a concave component the probability density function of the slave acquires a power
law tail characterized by a temperature dependent exponent. Thus we show that while the average value of the
slave, in the equilibrium state, is always finite and given by the fluctuation-dissipation relation, higher moments
and indeed the variance may show divergences. The behavior of the power law exponent is analyzed in a
general context and it is calculated explicitly in some specific examples. Our results are confirmed by numeri-
cal simulations and we discuss possible measurement discrepancies in the fluctuation dissipation relation which
could arise due to this behavior.
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I. INTRODUCTION

A standard experimental technique for probing a system is
to measure its response to a small external field. In equilib-
rium, static response functions are related through the
fluctuation-dissipation relation to appropriate static correla-
tion functions. A way to measure such responses in the con-
text of numerical simulations is the slave equation method
which is used for Langevin type systems, and more precisely
in the context of stochastic quantizationf1g. Via the static
fluctuation-dissipation theorem the slave equation method
can be used to compute correlation functions and has been
successfully exploited in numerical simulations of quantum
field theories and statistical spin systemsf2,3g. The advan-
tage of the slave equation method is that it provides a way of
measuring cumulant correlators directly with properly esti-
mated statistical errors. As has been noted, howeverf2,3g,
there are circumstances in which the slave equation method
breaks down. These difficulties are clearly illustrated by the
simple model investigated in this paper. Another advantage
of the slave method is that the response can be measured
without imposing a small external field and thus unperturbed
correlation functions can be measured simultaneously. Re-
cently various numerical methods for measuring response
functions in discrete spin systems, without applying an ex-
ternal field, have been proposedf4g.

Although not the subject of this paper, it is worth noting
that for systems in equilibrium more general fluctuation-
dissipation theorems exist that relate dynamical response
functions and dynamical correlation functions. In out of
equilibrium systems that exhibit aging various types of
fluctuation-dissipation theorems have been to shown to hold
in mean field models and numerical and experimental evi-

dence points to their validity in finite dimensional systems
f5g. Forms of fluctuation-dissipation relations and/or theo-
rems are also expected to hold in the steady state of certain
nonequilibrium driven systems.

The model we investigate is the simplest possible,
namely, an overdamped particle moving in one dimension in
a background potentialfsxd subject to an external fieldh and
thermal noise. The Langevin equation for this system is

ẋt = − f8sxtd + h + ht, s1d

whereht is zero mean Gaussian white noise with correlation
function

khtht8l = 2Tdst − t8d, s2d

with T the temperature. At zero external field we define the
response functionj by

jt = U ]xt

]h
U

h=0
. s3d

Differentiating Eq.s1d with respect toh and settingh=0 we
obtain the equation of motion ofjt as

j̇t = − f9sxtdjt + 1. s4d

The variablejt is referred to as the slave and Eq.s4d is the
slave equation corresponding to the processxt. This termi-
nology is obvious upon examining Eqs.s1d ands4d as we see
that the processjt is driven by the processxt but the evolu-
tion of xt is completely independent ofjt. Of course the
analysis can be generalized to higher dimensions. This is
separately interesting and will be addressed in future work.
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Processes whose evolution is similar to that given by Eq.
s4d arise in a variety of physical contexts such as the devel-
opment of curvature in material line and surface elements
and magnetic fields transported by random flowsf6–9g. In-
deed the behavior exhibited by the probability density func-
tions of the relevant slave variables is exactly as analyzed in
our simple model. A related slave variablezt,

zt =
]xt

]x0
, s5d

wherex0 is the initial value ofxt, satisfies the slave equation

żt = − f9sxtdzt. s6d

Equations6d is identical to Eq.s4d except for the inhomoge-
neous term +1 on the right. Although the two equations are
close in form the presence of this inhomogeneous term radi-
cally affects the statistics ofjt. The behavior of the slave
variablezt is a measure of the sensitivity of a system to its
initial conditions and thus related to Lyapunov exponents. It
was recently shown how Lyapunov exponents could be ana-
lyzed via supersymmetric quantum mechanicsf10g; our ap-
proach is not explicitly developed in terms of supersymmetry
but it is clear that it could be rewritten in these terms.

In equilibrium in the presence of an external fieldh, the
statistics of the processxt is described by the Gibbs-
Boltzmann distribution

PGBsxd =
1

Zshd
expf− bfsxd + bhxg, s7d

where

Zshd =E dxexpf− bfsxd + bhxg s8d

is the canonical partition function for the processx and b
=1/kBT, wherekB is Boltzmann’s constant. Clearly one has,
by linearity of the expectation of a probability distribution,
that

kjlE =
]

]h
kxlE, s9d

where the subscriptE denotes expectations taken in the equi-
librium state. Using the form of the Gibbs-Boltzmann distri-
bution then yields the static fluctuation-dissipation theorem

kjlE = bskx2lE − kxlE
2d. s10d

In simulations, the mean ofj in equilibrium is easy to
determine. It therefore provides, up to a multiplicative factor,
a direct estimator for the variance ofx. The numerical use-
fulness of this result is twofold. First, a straight calculation
of the variance computed as in Eq.s10d is not ideal from the
point of view of precision, as it involves the subtraction of
two numbers, each potentially much larger than their differ-
ence. Measuringj avoids this difficulty. Second, from the
variance ofj we have a proper statistical estimate for the
error in the susceptibility and the variance ofx. The utility of
the slave method hinges precisely on the existence and size
of the variance ofj, the slave variable.

Given the importance ofj as an estimator of the variance
of x by the fluctuation-dissipation relation and its direct
physical significance as a susceptibility, it is natural to inves-
tigate its statistical properties and in particular its equilib-
rium distribution function which we shall denote byrsjd. In
this paper, we address this issue in detail.

The equilibrium probability density ofj, rsjd, may be
obtained from the joint probability density functionsPDFd
Psx,jd via

rsjd =E dx Psx,jd. s11d

The joint PDF satisfiesf13g, in equilibrium

− HFPPsx,jd +
]

]j
hff9sxdj − 1gPsx,jdj = 0, s12d

where HFP is the forward Fokker-Planck operator for the
processxt and is defined by

HFPP = − T
]2

]x2P − f8sxd
]

]x
P − f9sxdP. s13d

The Gibbs-Boltzmann distribution forx, PGBsxd of Eq. s7d, is
recovered via

PGBsxd =E dj Psx,jd, s14d

and of course satisfies

− HFPPGBsxd = 0. s15d

II. STATIC FLUCTUATION-DISSIPATION RELATION

Because of the fundamental nature of the fluctuation-
dissipation theorem, it is illuminating to verify Eq.s10d from
Eq. s12d directly. We set

Psx,jd = PGBsxdFsx,jd, s16d

and defineFnsxd, where it exists, by the equation

Fnsxd =E dj jnFsx,jd. s17d

Clearly

F0sxd = 1 s18d

and

kjlE =E dx PGBsxdF1sxd. s19d

It follows from Eq. s12d that

ST
]

]x
− f8sxdD ]

]x
Fsx,jd +

]

]j
hff9sxdj − 1gFsx,jdj = 0.

s20d

If we multiply by j and integrate over allj we find
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ST
]

]x
− f8sxdD ]

]x
F1sxd − f9sxdF1sxd + 1 = 0. s21d

This can be rewritten in the form

]

]x
ST

]

]x
F1sxd − f8sxdF1sxd + xD = 0, s22d

which implies that

T
]

]x
F1sxd − f8sxdF1sxd + x − a = 0, s23d

wherea is an integration constant. If we then multiply by
PGBsxd and integrate over allx we find

a = kxlE. s24d

We now multiply by Eq.s23d by sx−adPGBsxd and integrate
over all x to obtain

− TE dx PGBsxdF1sxd +E dx PGBsxdsx − ad2 = 0, s25d

which is precisely the static fluctuation-dissipation relation
Eq. s10d. The derivation therefore confirms the properties of
the estimatorjt as deduced from the stochastic differential
equation forxt.

III. GENERAL PROPERTIES OF THE j PROBABILITY
DISTRIBUTION

It follows from Eq. s4d that for j.0, j̇t.1. This implies
that there is always a positive flow of probability from nega-
tive to positivej. In equilibrium therefore the support for
Psx,jd lies in the rangej.0. We shall assume also, which
can be justified subsequently, thatPsx,0d=0.

The Laplace transform of the joint probability function is

P̃sx,sd =E
0

`

dj e−sjPsx,jd. s26d

It follows from our discussion that we expectP̃sx,sd→0
faster thans−1 ass→`, and

E
0

`

dj e−sj ]

]j
Psx,jd = sP̃sx,sd. s27d

The largej behavior ofPsx,jd is also of importance. As
will become clear later this is strongly influenced by the
behavior off9sxd. Let there be an intervalU such that for
xPU, f9sxd.−g whereg.0. It follows from Eq.s4d that
while x remains inU thenj will grow exponentially. If the
time for whichx remains inU is t then the excursion expe-
rienced byj will be roughly of the form

j = j0e
gt, s28d

for somej0. Whenx leavesU, j will decay rapidly back to
small values. Since the processxt is essentially without
memory the distribution oft will be exponential,

pstd . m exps− mtd. s29d

The largej behavior ofrsjd is determined by these excur-
sions. We have

rsjd <
m

gj0
S j0

j
D1+a*

, s30d

where a* =m /g. Hence we can expect a power law in the
distribution for large values ofj when there exists a regionU
in which the potentialfsxd is concave. Of course the argu-
ment above does not allow an easy calculation or even esti-
mation of the exponent since the time spent in concave re-
gions is affected by the global structure of the potential.

A potential that exhibits a region of concavity and for
which therefore we expect to find a power law behavior for
rsjd is fsxd=s1−x2d2/4. We have simulated the Langevin
processxt and its slave by integrating Eqs.s1d ands4d using
a second order stochastic Runge-Kutta methodf12g. Shown
in Fig. 1 is the time series obtained forj at b=1/T=1. The
mean value of the process as predicted by the static
fluctuation-dissipation relation Eq.s10d is shown by the thick
horizontal line. A direct measurement of the time series av-
erage confirms this result, as it should.

The most striking feature of the time series, however, is
thatjt spends most of the time below the average value with
intermittent spikes rising to large values. These spikes are the
means by which the time series fills the power law tail in the
distribution for rsjd as indicated by the intuitive argument
explained above. The implication of this result for simula-
tions is that it is essential to include the intermittent upward
excursions if correct estimates are to be obtained for the
susceptibility. If therefore one were to measurekjlE by tak-
ing a time series average, then in order to obtain a satisfac-
tory estimate one must ensure that the time interval of the
measurement is of a length sufficient to sample the rare but
large excursions that represent the power law tail ofrsjd.

FIG. 1. Time series for slavejt with potential fsxd=s1
−x2d2/4 at b=1. Shown by the thick horizontal line is its average
value.
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The typical value ofj that one measures during a simulation
is well below the mean value. Thus measuring over too short
a time scale, or for other reasons omitting the large excur-
sions, will lead one to an underestimate ofkjlE.

Another approach to the fluctuation-dissipation theorem
would be to compute numerically or measure physically the
expectation valueja of the slave variablej and the variance
of the original variablex and use these results to provide an
estimateTef f of the temperature of the system,

Tef f =
kx2lE − kxlE

2

ja
. s31d

If for the reasons discussed above we underestimateja then
our estimate for the temperature will be too high,

Tef f ù T. s32d

It is interesting to note that this result withTef f/Tù1 is also
seen in aging systems where the dynamical fluctuation-
dissipation theorem is violated because the system is not in
equilibriumf11g. However, here the apparent violation is due
to an error of measurement in an equilibrium state and hence
of somewhat different origin.

The value of the exponenta* appearing in Eq.s30d may
be obtained from the numerical simulation by fitting a
straight line to the largej region of the log-log plot of the
numerically generated histogram ofj. We have carried out
this procedure for a range of values of the temperatureT and
the results are shown in Table I. Most importantly we see
that the exponenta* depends continuously on temperature.
In addition, two features of the behavior ofa* in these nu-
merical results stand out. First, asT→` then it appearsa*

→` sas a* increases an accurate fit of the power law tail’s
exponent becomes difficult due to the lack of statistical
weight in the taild. Second, asT→0 the numerics is consis-
tent with a* →1. This latter result is particularly significant.
At low temperature the PDF forx takes the form

PGBsxd =
1

2
fdsx − 1d + dsx + 1dg. s33d

This implies thatkxlE=0 and kx2lE=1. It follows from the
static fluctuation-dissipation relation that

kjlE .
1

T
asT → 0. s34d

For largej we have

rsjd .
C

j1+a* , s35d

for some positiveC. It follows that

kjlE =E`

dj jrsjd . E`

dj j
C

j1+a* .
C

sa* − 1d
. s36d

Comparing this result with the static fluctuation-dissipation
relation we see that at low temperature we should expect
a* →1 and more specificallyC/ sa* −1d<1/T. This is con-
sistent with the numerical results shown in Table I.

For a given value ofa* the existence of a power law tail
for rsjd means that momentskjnlE diverge forn.a* . At low
T, wherea* ,2, therefore even the variance of the estimator
for the susceptibility has become divergent. At this point it
has ceased to be a useful estimator and provides no reason-
able estimate for a statistical error on the susceptibility. The
slave equation method therefore becomes ineffective under
these circumstances. These issues in relation to simulations
of quantum field theory and spin models in statistical me-
chanics have been noted beforef2,3g.

IV. GENERAL THEORY

The above observations on the nature of the PDF ofj are
much clarified and rendered more robust by an understand-
ing of the general theory of the joint PDF. In order to pursue
the analysis it is convenient to make a standard transforma-
tion that rendersHFP into self-adjoint form. We define
Qsx,jd so that

Psx,jd = Qsx,jd
expf− bfsxd/2g

Z1/2 . s37d

It follows that Q obeys

− H0Qsx,jd +
]

]j
hfjf9sxd − 1gQsx,jdj = 0, s38d

where the manifestly self-adjoint operatorH0 is given by

H0 = − T
]2

]x2 + Vsxd s39d

with

Vsxd = S 1

4T
ff8sxdg2 −

1

2
f9sxdD . s40d

We introduce the Laplace transform ofQ with respect to the
variablej,

Q̃sx,sd =E
0

`

dj exps− sjdQsx,jd, s41d

and thus the corresponding Laplace transform ofP is given
by

P̃sx,sd =
expf− bfsxd/2gQ̃sx,sd

Z1/2 . s42d

We note that

TABLE I. The exponenta* , estimated by straight line fit to the
tail of the log-log plot of the numerically generated histogram, as a
function of b for the potentialfsxd=s1−x2d2/4.

T a* snumericsd

0.66 2.46s3d
0.50 1.86s2d
0.40 1.67s1d
0.33 1.54s1d
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P̃sx,0d =
expf− bfsxdg

Z
, s43d

which thus gives us the initial conditions forQ̃ at s=0 to be

Q̃sx,0d =
expf− bfsxd/2g

Z1/2 . s44d

The evolution equation forQ̃ is

H0Q̃ + sQ̃+ s
]

]s
Q̃ = 0. s45d

We notice that a particular solution of Eq.s45d can be written
as a power series expansion ins,

Q̃sadsx,sd = o
n=0

`

sa+nfn
sadsxd, s46d

where the indicial equation determining the allowed values
of a is

H0f0
sad + af9sxdf0

sad = 0. s47d

The general solution may then be written as a linear super-
position of these particular solutions:

Q̃sx,sd = o
a

waQ̃sadsx,sd. s48d

We notice thata=0 is always a solution of Eq.s47d with a
correspondingf0

s0d given by

f0
s0dsxd =

expf− bfsxd/2g
Z1/2 . s49d

The initial condition Eq.s44d means thatwa=0 for a,0,

otherwiseQ̃ would diverge ats=0. The solution must there-
fore be of the form

Q̃sx,sd = o
n=0

`

snfn
s0dsxd + o

a.0
waQ̃sadsx,sd. s50d

It is easy to see, on reconstructingrsjd from the above
Laplace transform, that it must have the form

rsjd ~
1

j1+a* s51d

for largej wherea* is the smallest strictly positive solution
to the indicial equation withwa* Þ0. If there are no solutions

to the indicial equation witha.0 thenQ̃sx,sd must be given
by

Q̃sx,sd = o
n=0

`

snfn
s0dsxd s52d

and is analytic ins, and all of the moments ofj will presum-
ably exist; thusrsjd will not have a power law tail at largej.
The physical arguments leading to Eq.s30d suggest that Eq.
s51d should hold when there is a region wheref9sxd,0. In
addition the same physical argument and the static

fluctuation-dissipation relation also show that we should
have a* .1 for finite b, otherwisej will diverge, which
means that the variance ofx on the right hand side of Eq.
s10d diverges, which is clearly not possible for a sufficiently
confining potential. We shall now confirm this physical pic-
ture mathematically. If we define the operator

A0 = ÎT
]

]x
+

1

2ÎT
f8sxd, s53d

then clearly we may writeH0=A0
†A0, which shows thatH0 is

positive semidefinite. Iff is a solution to the indicial equa-
tion Eq. s47d, multiplying by f and integrating over allx
gives

E dx fH0f + aE dx f2f9sxd = 0. s54d

Whenf9sxdù0 for all x, it follows thataø0. As expected,
no power law behavior is possible in this case.

The indicial equation Eq.s47d may also be written as

− T
]2

]x2 f + S s1 − 2ad2

4T
ff8sxdg2 −

1 − 2a

2
f9sxdD f

+
as1 − ad

T
ff8sxdg2f = 0, s55d

which is equivalent to

Haf +
as1 − ad

T
ff8sxdg2f = 0, s56d

where the positive semidefiniteHa is given by

Ha = Aa
†Aa, s57d

with

Aa = ÎT
]

]x
+

1 − 2a

2ÎT
f8sxd. s58d

This thus yields

E dx fHaf +
as1 − ad

T
E dx f2ff8sxdg2 = 0, s59d

which implies thatas1−ad,0; thus if a is positive then we
must havea.1, again confirming the physical reasoning of
the Introduction.

We shall now show that if there exists a region where
f9sxd,0, then there is a solution to the indicial equation
with a.0, and from the preceding argument, if such ana
exists thena.1.

We consider the following eigenvalue equation:

H0c0 + af9sxdc0 = E0sadc0, s60d

whereE0 denotes the ground state energy andc the corre-
sponding ground state wave function. Consider this eigen-
value problem ata=0; here we have

uc0ua=0 =
1

Z1/2 expf− bfsxd/2g, s61d
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E0s0d = 0. s62d

First order perturbation theory shows us that

]

]a
E0sad =E dx c0

2f9sxd =
1

ZT
E dxff8sxdg2 expf− bfsxdg.

s63d

Thus ata=0 we haves] /]adE0sad.0; thus there is a region
of a.0 whereE0sad.0 and there can be no acceptable
solutiona to the indicial equation in that region.

We shall now use the well known variational formula

E0sad = mincE dxFTS ]c

]x
D2

+ S 1

4T
ff8sxdg2

+
1

2
s1 − 2adf9sxdDc2G , s64d

where the minimum is taken over all functions such that
edx csxd2=1. Defineg=−minxhf9sxdj and consider the case
where g.0 and letx0 be a point where this minimum is
obtained. Without loss of generality we takex0=0. Now con-
sider the trial wave function

c*sxd = S c

2p
D1/4

exps− cx2/4d s65d

for c large and positive. Using Eq.s64d we obtain

E0sad ø
Tc

4
+ S 1

4T
ff8s0dg2 −

g

2
s2a − 1dD + OS 1

Îc
D .

s66d

Thus if c@1 anda@c then we haveE0sad,0. Assuming
the continuity ofE0sad, along with the fact thatEsad is posi-
tive in a regions0,ld for some l .0, we have shown the
existence ofa* .0 such thatEsa*d=0.

Now it remains to be shown that in the case wherefsxd is
concave for some range ofx, the coefficientwa* in Eq. s48d
is nonzero. We recall the boundary conditionPsx,0d=0

which means that for larges Q̃sx,sd must decay more
quickly than 1/s at larges.

Equations45d may be written as

Q̃sx,sd = −E dx8Gsx,x8;sds
]

]s
Q̃sx8,sdf9sx8d, s67d

whereG is the Green’s function obeying

sH0 + sdGsx,x8;sd = dsx − x8d. s68d

For fixedx andx8 ands@1 we have from Eq.s68d

Gsx,x8;sd <
dsx − x8d

s
, s69d

which means that for larges

Q̃sx,sd < − f9sxd
]

]s
Q̃sx,sd s70d

and hence

Q̃sx,sd < Hsxdexpf− s/f9sxdg. s71d

This means in particular that if there is a pointx wheref is

concave thenQ̃s0dsx,sd diverges there and thus the full solu-

tion needs to have at least onewaÞ0 asQ̃sadsx,sd has the
same divergent behavior ats→`; the coefficients must then
be chosen to cancel the divergence. A similar mechanism
was identified in simplified discrete versions of the slave
equation of the model discussed in this paperf14g.

V. SPECIFIC EXAMPLES

A. The simple harmonic oscillator

The simplest example one can consider is the simple har-
monic oscillator with

fsxd =
lx2

2
. s72d

From the theory of the preceding section we know that there
should be no power law behavior inrsjd, and although the
problem can be explicitly solved it is instructive to work
through the mathematics as formulated in Sec. III.

The indicial equation in this case is

− T
]2

]x2 f +
l2x2

4T
f =

l

2
s1 − 2adf . s73d

The left hand side of Eq.s73d is the Hamiltonian for a quan-
tum simple harmonic oscillator of massm=1/2T and fre-
quency v=l. The energy levels are thusEn= sn+ 1

2
dl and

comparing with the right hand side of Eq.s73d immediately
yields that the solutions fora area=−n and hence, as pre-
dicted, are all negative. Clearly the slave equation reads

j̇t = − lj + 1, s74d

and so the equilibrium distribution ofj is ad function at the
fixed pointj=1/l,

rsjd = dSj −
1

l
D . s75d

B. The potential f= zxz

We now consider the potential

fsxd = uxu. s76d

Again there can be no power law behavior. The interesting
point about this potential is that the full distribution ofj can

be computed. One can easily solve forP̃sx,sd to obtain

P̃sx,sd =
lssd

2
expf− lssduxugexpF− 2Sbs+

1

4
D1/2G ,

s77d

where
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lssd =
b + sb2 + 4bsd1/2

2
. s78d

Then after integrating overx the Laplace transform can be
inverted to yield

rsjd =
be

p1/2sbjd3/2 expS−
bj

4
−

1

bj
D . s79d

Notice that the larges behavior is not that predicted by Eq.
s71d due to thed function singularity inf9sxd at x=0, where
this occurs it is easy to see that one has a behavior of the
form exps−AÎsd but the conclusions stay the same. Indeed,
the simplest cases exhibiting a power law distribution inj
are those wheref9sxd is composed ofd functions, as is the
case for continuous piecewise linear or quadratic potentials
f.

C. The piecewise continuous quadratic potential

Here we consider the potential

fsxd =
1

2
suxu − 1d2 − hx. s80d

In this case we again expect a power law tail in the distribu-
tion of j. The indicial equation in this case is

− T
]2

]x2 f + S 1

4T
sx − h − 1d2 −

1

2
s1 − 2adD f = 0, x . 0,

− T
]2

]x2 f + S 1

4T
sx − h + 1d2 −

1

2
s1 − 2adD f = 0, x , 0,

s81d

along with the continuity off at x=0 and the jump condition.

− TSU ]f

]x
U

0+
−U ]f

]x
U

0−
D + s1 − 2adfs0d = 0. s82d

The solution that decays asuxu→` is

fsxd = A+D−a„
Îbsx − h − 1d…, x ù 0,

fsxd = A−D−a„
Îbsh − 1 −xd…, x ø 0, s83d

whereDp denotes a parabolic cylinder function of indexp
f15g. Using the jump condition and continuity atx=0, along
with the identityf15g

Dp8szd −
z

2
Dpszd + Dp+1szd = 0, s84d

we find thata obeys the equation

Gsa,b,hd = 0, s85d

where

Gsa,b,hd = 2Îbsa − 1dD−a„− Îbs1 + hd…D−a„− Îbs1 − hd…

− D1−a„− Îbs1 − hd…D−a„− Îbs1 + hd…

− D1−a„− Îbs1 + hd…D−a„− Îbs1 − hd…. s86d

Numerically solving Eq.s85d shows that we have one
positive roota* , the roota=0, while all the others are nega-
tive. An example is shown in Fig. 2.

At small b we can show that

a* < 1/b, s87d

while the largeb behavior depends on the value ofh. In the
caseuhu,1 the system has two local minima and we find that
asT→0 thena* is given by

a* < 1 +
1

Î8pb
hexpf− bs1 + hd2/2g + expf− bs1 − hd2/2gj.

s88d

Here we see that in the zero temperature limita* →1. In
addition the asymptotic form fora* fEq. s88dg tells us that
the coefficientC of the power law tail must behave as

C ,Î b

2p
exps− b/2d s89d

in the case whenh=0. This follows from the static
fluctuation-dissipation theorem and the fact that the variance
of x is nonzero asT→0 whenh=0. Thus although the power
law exponenta* decreases, the coefficient of the power law
component of the PDF is, in this case, tending to zero expo-
nentially quickly. This can be understood physically, as the
excursions into the region wheref is concave are into re-
gions of high energy, whose Boltzmann weight is exponen-
tially suppressed.

In the caseuhu.1 there is only one local minimum and
we find asT→0 that

a* < 1 +
uhu − 1

2
. s90d

The predictions obtained by our method may be con-
firmed by numerical simulations. In the numerical simula-
tions one needsf8 to be continuous and so the cusp in the

FIG. 2. Graph ofGsa ,b ,hd againsta at b=1 andh=0. Note
that there is only one strictly positive solution toGsa ,b ,hd=0.
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potential atx=0 needs to be regularized. We take a small
interval fe ,eg where we setf8sxd=se−1dx/e+h; this choice
ensures thatf8sxd is continuous and in the limite→0 we
recover the potential of Eq.s80d. Simulation results are per-
formed withe=0.05 and compared with the analytical result
for the potentialf of Eq. s80d. A comparison of the expo-
nents obtained from the numerical simulation and from solv-
ing Eq. s85d for the caseh=0 is shown in Table II; the
agreement is excellent and the deviation is compatible with it
being of ordere=0.05. Similar agreement is found whenh is
nonzero.

D. The W-shaped potential

Here we consider the W-shaped potential given by

fsxd = Haux − 1u, uxu ø 1,

uxu − 1, uxu ù 1.
J s91d

The second derivative of the potential is thus given by

f9sxd = − 2adsxd + s1 + addsx − 1d + s1 + addsx + 1d,

s92d

and so from the general theory of Sec. III we expect a power
law behavior wherea.0 anda,−1. The indicial equation
is given by

− T
]2

]x2 f +
a2

4T
f = 0 uxu ø 1,

− T
]2

]x2 f +
1

4T
f = 0 uxu ù 1, s93d

along with the jump conditions

U − 2T
]

]x
fU

0
+ as1 − 2adfs0d = 0, s94d

TFU ]

]x
fU

1+
−U ]

]x
fU

1−
G − S1

2
− aDs1 + adfs1d = 0. s95d

The solution of the indicial equation, which decays as
uxu→`, is

fsxd = HA+ expsbauxu/2d + A− exps− bauxu/2d, uxu ø 1,

B exps− buxu/2d, uxu ù 1.
J
s96d

Continuity atx=1 then gives

B exps− b/2d = A+ expsba/2d + A− exps− ba/2d, s97d

allowing for the elimination of the variableB. The vector

u = SA+

A−
D s98d

is then determined byMu=0, where

M = S − a 1 − a

expsba/2das1 + ad exps− ba/2dsas1 + ad − ad
D .

s99d

The possible values of the exponenta are then determined
by the existence of a solution such thatuÞ0, that is to say,
detM =0, which yields the solutiona=0 or

a = a* = 1 +
1

s1 + adfexpsbad − 1g
. s100d

We see from Eq.s100d that a* is positive and greater than 1
in the region wheref has a concave component as predicted
by the general theory. In the regiona.0 we find that

a* <51 +
1

as1 + adb
asb → 0,

1 +
exps− bad

s1 + ad
asb → `.6 s101d

In the regiona,−1 we find

a* <51 +
1

uauu1 + aub
asb → 0,

1 +
1

u1 + au
asb → `.6 s102d

We see in the casea,−1 in the limit T→0 that a* .1;
this must be the case from the static fluctuation-dissipation
relation: here there is only one minimum and we therefore
have

bkx2lE <
b e dx x2 exps− buauuxud

e dxexps− buauuxud
<

2T

a2 , s103d

and hencekjlE has no divergence asT→0.
An interesting point emerges here. If the variance ofx is

nonzero in the limitT→0 the static fluctuation-dissipation
theorem tells us that the coefficienta* →1 in this limit.
However, even if the variance ofx tends to zero thena* may
still tend to 1 in the zero temperature limit. This is seen in the
case of the potentialfsxd=suxu−1d2/2−hx where the minima
are only degenerate ath=0. The average value ofj stays
finite because the prefactor, denoted in this paper byC, of
the power law component of the PDF ofj is tending to zero
sufficiently rapidly. In the cases we have examined here it
seems thata* →1 in the zero temperature limit when there

TABLE II. Exponenta* evaluated from histogram ofj numeri-
cally generated for the potentialf of Eq. s80d regulated at the origin
with e=0.05 compared with analytical prediction of Eq.s85d for
various values ofT and ath=0.

T a* snumericsd a* spredictedd

2.0 2.54s1d 2.560

1.0 1.61s4d 1.612

0.5 1.22s1d 1.191

0.4 1.12s1d 1.121
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are at least two local minima of the potentialf. It seems
possible therefore that the zero temperature behavior of the
exponenta* encodes geometrical or topological properties of
the potentialf.

VI. CONCLUSIONS

We have analyzed the equilibrium distribution of a slave
variablejt which is the estimator of the susceptibility of a
one dimensional Langevin processxt. Even though the equi-
librium statistics ofxt are such that all moments are finite
sfor a sufficiently confining potentiald, the probability density
function of the slavejt can have power law tails character-
ized by a temperature dependent exponent. This power law
behavior is present when the potentialf has a concave com-
ponent. The origin of this power law can be understood from
simple qualitative arguments. The behavior of the power law
exponent can be analyzed in the steady state using the
Fokker-Plank equation for the equilibrium joint probability
density functionPsx,jd for sxt ,jtd. The exponent is large at

high temperatures and decreases on decreasing the tempera-
ture. As the temperature is reduced the higher order moments
of the slavejt diverge and ultimately the variance of the
slave may diverge, thus rendering it a poor estimator for the
susceptibility. This pathology in the slave statistics had been
observed in Langevin simulations of spin and quantum sys-
temsf2,3g. A number of exactly soluble cases were analyzed
and the results confirmed by numerical simulation.

In future work it would be interesting to generalize our
results to higher dimensional systems, notably interacting
systems where phase transitions may occur. The temporal
evolution of the PDF of the slave is also worthy of future
study. It would be interesting to know how quickly the tails
of the slave’s PDF fill out and after what time it becomes
equilibrated. One would also like to understand over what
time scale temporal averages need to be carried out in order
to numerically verify the static fluctuation-dissipation rela-
tion. Finally the analysis developed here could prove useful
in the analysis of similar slave variables occurring in Lange-
vin systems.
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