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Equilibrium statistics of a slave estimator in Langevin processes
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We analyze the statistics of an estimator, denoted;bgnd referred to as the slave, for the equilibrium
susceptibility of a one dimensional Langevin procgss a potentialg(x). The susceptibility can be measured
by evolving the slave equation in conjunction with the original Langevin process. This procedure yields a
direct estimate of the susceptibility and avoids the need, when performing numerical simulations, to include
applied external fields explicitly. The success of the method, however, depends on the statistical properties of
the slave estimator. The joint probability density function fprand & is analyzed. In the case where the
potential of the system has a concave component the probability density function of the slave acquires a power
law tail characterized by a temperature dependent exponent. Thus we show that while the average value of the
slave, in the equilibrium state, is always finite and given by the fluctuation-dissipation relation, higher moments
and indeed the variance may show divergences. The behavior of the power law exponent is analyzed in a
general context and it is calculated explicitly in some specific examples. Our results are confirmed by numeri-
cal simulations and we discuss possible measurement discrepancies in the fluctuation dissipation relation which
could arise due to this behavior.
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I. INTRODUCTION dence points to their validity in finite dimensional systems

A standard experimental technique for probing a system i£5]. Forms of fluctuation-dissipation relations and/or theo-
to measure its response to a small external field. In equilibteMs are also expected to hold in the steady state of certain
rium, static response functions are related through th&@onequilibrium driven systems.
fluctuation-dissipation relation to appropriate static correla- The model we investigate is the simplest possible,
tion functions. A way to measure such responses in the corfamely, an overdamped particle moving in one dimension in
text of numerical simulations is the slave equation method background potentia(x) subject to an external fieldand
which is used for Langevin type systems, and more preciselthermal noise. The Langevin equation for this system is
in the context of stochastic quantizatiph]. Via the static _ ,
fluctuation-dissipation theorem the slave equation method X == @' (%) +h+ap, (1)
can be used to compute correlation functions and has begjnere 1, is zero mean Gaussian white noise with correlation
successfully exploited in numerical simulations of quantum,nction
field theories and statistical spin systefs3]. The advan-
tage of the slave equation method is that it provides a way of () =2TS(t-1t'), (2
measuring cumulant correlators directly with properly esti- , ,
mated statistical errors. As has been noted, how&2@, with T the temperature. At zero external field we define the
there are circumstances in which the slave equation methd§SPonse functiog by
breaks down. These difficulties are clearly illustrated by the
simple model investigated in this paper. Another advantage &= . (3)
of the slave method is that the response can be measured h 1n=o
without _imposing a small external field anq thus U”perturbeqjifferentiating Eq.(1) with respect tch and settinh=0 we
correlatlon functions can be measured S|multeneously. R&sptain the equation of motion & as
cently various numerical methods for measuring response
functior_ls in discrete spin systems, without applying an ex- 'gt: — B (x)E+ L. (4)
ternal field, have been proposgd.

Although not the subject of this paper, it is worth noting The variableg; is referred to as the slave and Hd) is the
that for systems in equiliborium more general fluctuation-slave equation corresponding to the procrssThis termi-
dissipation theorems exist that relate dynamical responseology is obvious upon examining Eq4) and(4) as we see
functions and dynamical correlation functions. In out of that the processg; is driven by the process but the evolu-
equilibrium systems that exhibit aging various types oftion of x; is completely independent of;. Of course the
fluctuation-dissipation theorems have been to shown to holdnalysis can be generalized to higher dimensions. This is
in mean field models and numerical and experimental eviseparately interesting and will be addressed in future work.

I
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Processes whose evolution is similar to that given by Eq. Given the importance of as an estimator of the variance
(4) arise in a variety of physical contexts such as the develoef x by the fluctuation-dissipation relation and its direct
opment of curvature in material line and surface elementghysical significance as a susceptibility, it is natural to inves-
and magnetic fields transported by random flgés9]. In-  tigate its statistical properties and in particular its equilib-
deed the behavior exhibited by the probability density funcrium distribution function which we shall denote byé). In
tions of the relevant slave variables is exactly as analyzed ithis paper, we address this issue in detail.

our simple model. A related slave varialjg The equilibrium probability density of, p(¢), may be
obtained from the joint probability density functidi?DPF
X :
L=—, (5) P(x, ) via
Xo
wherexg is the initial value ofx;, satisfies the slave equation p(é) :f dx P(x,é). (12)
G=-¢" )& ®)  The joint PDF satisfies13], in equilibrium
Equation(6) is identical to Eq(4) except for the inhomoge- 9
neous term +1 on the right. Although the two equations are —HepP(x,8) + —{[¢"(X)é- 1]P(x,6)} =0, (12)
close in form the presence of this inhomogeneous term radi- 9¢

cally affects the statistics of. The behavior of the slave \yhere Hp, is the forward Fokker-Planck operator for the
variable ; is a measure of the sensitivity of a system to 'tsprocessq and is defined by

initial conditions and thus related to Lyapunov exponents. It

was recently shown how Lyapunov exponents could be ana- Hop = _TJ_ZP_ ’(x)i

lyzed via supersymmetric quantum mecharit8]; our ap- FPT ™ 7 o2 ¢ IX

proach is not explicitly developed in terms of supersymmetry ) S )

but it is clear that it could be rewritten in these terms. The Gibbs-Boltzmann distribution fot Pgg(x) of Eq. (7), is
In equilibrium in the presence of an external fi¢gidthe ~ recovered via

statistics of the process; is described by the Gibbs-

P-¢"(x)P. (13

Boltzmann distribution Psa(X) :Jdg P(x,8), (14
Peg(X) = % exp - Bé(x) + ghx], (7)  and of course satisfies
where = HepPgg(x) =0. (15
Z(h) = f dxexd - Beo(x) + phx] (8)
Il. STATIC FLUCTUATION-DISSIPATION RELATION

is the canonical partition function for the procesand 8 Because of the fundamental nature of the fluctuation-

=1/kgT, wherekg is Boltzmann's constant. Clearly one has, gjssipation theorem, it is illuminating to verify E¢LO) from
by linearity of the expectation of a probability distribution, gq. (12) directly. We set

that
5 P(x,8) = Pee(X)F(x,§), (16)
(e= %<X>E, (9 and defineF,(x), where it exists, by the equation
where the subscrif denotes expectations taken in the equi- :f
librium state. Using the form of the Gibbs-Boltzmann distri- Fal®) dg EF(x.8). (7
bution then yields the static fluctuation-dissipation theorem
5 Clearly
= B((x®)e - . 10
(&= BEXx7)e = (Xp) (10) o= 1 (18

In simulations, the mean of in equilibrium is easy to
determine. It therefore provides, up to a multiplicative factor,
a direct estimator for the variance »f The numerical use-
fulness of this result is twofold. First, a straight calculation (&= f dx Pgg(X)F4(X). (19
of the variance computed as in HE40) is not ideal from the
point of view of precision, as it involves the subtraction of |t follows from Eq.(12) that
two numbers, each potentially much larger than their differ- ; ; ;
ence. Measuring avoids this difficulty. Second, from the o o Ot _ _
variance of¢ we have a proper statistical estimate for the <Tax ¢ (X)>(9XF(X’ O+ ﬂg{[‘ﬁ (x)&-1]F(x,£)}=0.

and

error in the susceptibility and the variancexofThe utility of (20)
the slave method hinges precisely on the existence and size
of the variance of, the slave variable. If we multiply by ¢ and integrate over alf we find
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15 T T

(T(gix - ¢’(x)),;ix':1(x) - ¢"(WF () +1=0. (21)

This can be rewritten in the form

(7 (9 10 - .

—| T—=F1(x) = ¢’ X)F1(x) +x] =0, 22

&X( PAEC AR X) (22)
which implies that 5

17

Ta_xFl(X) - ¢'(X)F1(x) +x-a=0, (23 5t .
wherea is an integration constant. If we then multiply by
Pce(x) and integrate over alt we find

a=(Xg. (24) 0 !ﬁ M

We now multiply by Eq.(23) by (x—a)Pgg(x) and integrate t

over allx to obtain FIG. 1. Time series for slaves with potential ¢(x)=(1

-x?)2/4 at B=1. Shown by the thick horizontal line is its average
- TJ dx Pgg(X)F4(x) + f dx Pgg(X)(x—a)?=0, (25  value.

which is precisely the static fluctuation-dissipation relation p(7) = pexp(— ur). (29
Eq. (10). The derivation therefore confirms the properties of ] ) ]
the estimator, as deduced from the stochastic differential The large¢ behavior ofp(¢) is determined by these excur-

l+a*
Ill. GENERAL PROPERTIES OF THE ¢ PROBABILITY p(&) = i(@> : (30)
DISTRIBUTION 9%\ &

where «" =u/g. Hence we can expect a power law in the
distribution for large values of when there exists a regidnh

in which the potentiakp(x) is concave. Of course the argu-
M .~ ment above does not allow an easy calculation or even esti-
P(x,¢) lies in the ranget>0. We shall assume also, which mation of the exponent since the time spent in concave re-

can be justified subsequently, tHax,0)=0. _ . gions is affected by the global structure of the potential.
The Laplace transform of the joint probability function is = A potential that exhibits a region of concavity and for
o which therefore we expect to find a power law behavior for
'B(X,S):f dé e7SEP(x, &) (26)  p(§) is p(x)=(1-x?)?/4. We have simulated the Langevin
0 processx; and its slave by integrating Egel) and (4) using
] ) ~ a second order stochastic Runge-Kutta metHidd. Shown
It follows from our discussion that we expeB(x,s)—0 i Fig. 1 is the time series obtained férat 3=1/T=1. The

It follows from Eq. (4) that for §=0, étzl. This implies
that there is always a positive flow of probability from nega-
tive to positive&. In equilibrium therefore the support for

faster thars™ ass—, and mean value of the process as predicted by the static
o fluctuation-dissipation relation E¢LO) is shown by the thick
J d¢ e—sgip(x, o= SP(x,9). (27) horizontal line. A direct measurement of the time series av-
0 23 erage confirms this result, as it should.

The most striking feature of the time series, however, is
, N ) that & spends most of the time below the average value with
will become ::Iear later this is strongly influenced by thejniermittent spikes rising to large values. These spikes are the
behavior of¢"(x). Let there be an intervall such that for  oang 1y which the time series fills the power law tail in the
xe U, ¢"(x)=-g whereg>0. It follows from Eq.(4) that  gistribution for p(¢) as indicated by the intuitive argument
while x remains inU then ¢ will grow exponentially. If the  eyplained above. The implication of this result for simula-
time for whichx remains inU is 7 then the excursion expe- tjons js that it is essential to include the intermittent upward
rienced by¢ will be roughly of the form excursions if correct estimates are to be obtained for the
- T susceptibility. If therefore one were to measuég: by tak-
&= &g, (28 . ) . . .
ing a time series average, then in order to obtain a satisfac-
for some&,. Whenx leavesU, ¢ will decay rapidly back to tory estimate one must ensure that the time interval of the
small values. Since the process is essentially without measurement is of a length sufficient to sample the rare but
memory the distribution of will be exponential, large excursions that represent the power law taip@).

The large¢ behavior ofP(x, £) is also of importance. As
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TABLE I. The exponenia”, estimated by straight line fit to the C
tail of the log-log plot of the numerically generated histogram, as a p(€) = PR (35
function of 8 for the potentialg(x) =(1-x2)?/4. 3

for some positiveC. It follows that

T o' (numeric3
* - C C
0.6 2.463) (He= f dé ép(é) = f déé s = gy 39
0.50 1.862) ¢ “
0.40 1.671) Comparing this result with the static fluctuation-dissipation
0.33 1.541) relation we see that at low temperature we should expect

a' —1 and more specificallC/(a" - 1)~ 1/T. This is con-
sistent with the numerical results shown in Table I.
The typical value of that one measures during a simulation  For a given value ofr" the existence of a power law tail
is well below the mean value. Thus measuring over too shorfor p(£€) means that momentg")e diverge forn>a". At low
a time scale, or for other reasons omitting the large excurT, wherea" < 2, therefore even the variance of the estimator
sions, will lead one to an underestimate(éfg. for the susceptibility has become divergent. At this point it

Another approach to the fluctuation-dissipation theoremhas ceased to be a useful estimator and provides no reason-
would be to compute numerically or measure physically theable estimate for a statistical error on the susceptibility. The
expectation valug, of the slave variablg and the variance slave equation method therefore becomes ineffective under
of the original variablex and use these results to provide anthese circumstances. These issues in relation to simulations
estimateT of the temperature of the system, of quantum field theory and spin models in statistical me-

5 ) chanics have been noted bef¢ge3].
_ (X9 - (Xe

Tert= ‘ : (3D IV. GENERAL THEORY
a

The above observations on the nature of the PDE arfe
much clarified and rendered more robust by an understand-
ing of the general theory of the joint PDF. In order to pursue
Teri=T. (320  the analysis it is convenient to make a standard transforma-

. . . ) ) tion that rendersHgp into self-adjoint form. We define
It is interesting to note that this result willfy/ T=1 is also Q(x, &) so that

seen in aging systems where the dynamical fluctuation-
dissipation theorem is violated because the system is not in exd— Bp(x)/2]

If for the reasons discussed above we underestigatieen
our estimate for the temperature will be too high,

equilibrium[11]. However, here the apparent violation is due P(x.6)=Q(x.9 7112 (37
to an error of measurement in an equilibrium state and hence
of somewhat different origin. It follows that Q obeys
The value of the exponent™ appearing in Eq(30) may P
be obtained from the numerical simulation by fitting a - HpQ(x,é) + a—g{[gd’(x) -1]Q(x,8}=0, (398

straight line to the large region of the log-log plot of the

numerically generated histogram &f We have carried out \here the manifestly self-adjoint operatdy is given by
this procedure for a range of values of the temperaiuaed

the results are shown in Table I. Most importantly we see
that the exponent” depends continuously on temperature.
In addition, two features of the behavior af in these nu-
merical results stand out. First, &s— then it appears:’
— (asa’ increases an accurate fit of the power law tail's 1 1

exponent becomes difficult due to the lack of statistical V(x):(4—_|_[¢’(x)]2—§¢”(x)>. (40)
weight in the tail. Second, ag — 0 the numerics is consis-

tent with «" — 1. This latter result is particularly significant. We introduce the Laplace transform @fwith respect to the

&P
Ho= =T+ V(¥ (39)

with

At low temperature the PDF for takes the form variable¢,
1 - oo
Peg(x) = S[ox~ 1)+ dx + 1)]. (33 Q(x,s) = f d¢ exp(= s§)Q(x, &), (41)
0
This implies that(x)z=0 and(x?)e=1. It follows from the and thus the corresponding Laplace transforniPd$ given
static fluctuation-dissipation relation that by
1 = exti- Bp(0/2]Q(x,9)
(&= T asT—0. (34) P(x,s) = 12 . (42)
For large¢ we have We note that
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exd - Bo(X)] fluctuation-dissipation relation also show that we should
P(X,O):T7 (43)  have o’ >1 for finite B, otherwise¢ will diverge, which
means that the variance &fon the right hand side of Eq.

which thus gives us the initial conditions fQ ats=0 to be  (10) diverges, which is clearly not possible for a sufficiently
confining potential. We shall now confirm this physical pic-

O(x,0) = exi- fo(x/2] (4g)  ture mathematically. If we define the operator
A Zl/2 '
=d 1
: . ~ . =ENT—+ —=¢' (%), 53
The evolution equation fo® is Ag=NT— 2v"T¢ ) (53)
~ = O~ then clearly we may Writdﬁo:AOTAo, which shows thaH, is
HoQ+sQ+ SasQ_ 0 (45) positive semidefinite. If is a solution to the indicial equa-

tion Eq. (47), multiplying by f and integrating over alk
We notice that a particular solution of E@5) can be written  gjyeg q ping By greing

as a power series expansionsn

~ > f dx fHof + a f dx 2¢"(x) = 0. (54)
QW (x,9) = >, ¥ (x), (46)
n=0 When ¢"(x) =0 for all x, it follows thata<0. As expected,

where the indicial equation determining the allowed valuesho power law behavior is possible in this case.

of ais The indicial equation Eq(.47) may also be written as

Hof§” + ag" (0§ = 0. 47 Fo (- -2,

ofg + ad" TS 7 )

The general solution may then be written as a linear super-
position of these particular solutions: a(l a)

- - ———[¢'0Ff=0, (55)

Q(x,8) = 2 W,Q(x,9). (48)

a which is equivalent to
We notice thate=0 is always a solution of Eq47) with a a(l @)
; 0) i 2¢ —

corresponding,’ given by H.f+ [¢'(X)]F = (56)

10(x) = %ﬁ(x)lz]. (49)  Where the positive semidefinitd, is given by

z
H,= AIonu (57)

The initial condition Eq.(44) means thaiw,=0 for «<0,

otherwise@ would diverge as=0. The solution must there- with
fore be of the form 9 1-2
A=NT+ 20 (). (58)
E (0) E (@) x 2T
X,S S+ 2 w,Q (xS 50
Q9= ®) =0 Q9. (50 This thus yields

It is easy to see, on reconstructingé) from the above a(l-a) o D
Laplace transform, that it must have the form dx THf + = dx f{¢'(®]°=0, (59

1 which implies thata(1-a) <0; thus if « is positive then we
Pl = — 6D ¢ i oo firmi . .
gira ust havea>1, again confirming the physical reasoning of
.. _ - ~ the Introduction.
for large ¢ wherea is the smallest strictly positive solution We shall now show that if there exists a region where
to the indicial equation withv - # 0. If Ehere are no solutions  (x) <0, then there is a solution to the indicial equation
to the indicial equation witlw >0 thenQ(x,s) must be given with «>0, and from the preceding argument, if suchan

by exists thena>1.
" We consider the following eigenvalue equation:
Qx9 =2 (%) (52) Hotlo + )" (X = Eo() o, (60)
n=0

) o ) where E, denotes the ground state energy ahthe corre-
and is analytic irs, and all of the moments afwill presum-  sponding ground state wave function. Consider this eigen-
ably exist; thusp(£) will not have a power law tail at largé  yajue problem aw=0; here we have
The physical arguments leading to E§0) suggest that Eq.
(51) should hold when there is a region wheb&(x) <0. In

addition the same physical argument and the static ola=o=

17 exl- Ao/, (61)

031103-5



DEAN et al. PHYSICAL REVIEW E 71, 031103(2005

Eo(0)=0. (62) Q(x,9) = H(X)ex - ¥¢"(X)]. (71)

First order perturbation theory shows us that This means in particular that if there is a poiwhere ¢ is

d 1 concave therQ©(x,s) diverges there and thus the full solu-
—E =|d "(x) = — | d{¢'(X)]? - ) ~
Ja ol@) f X¢%¢ e ZTJ X' )1 exil- BHX)] tion needs to have at least omg #0 asQ@(x,s) has the

(63) same divergent behavior at- «; the coefficients must then
be chosen to cancel the divergence. A similar mechanism
Thus ate=0 we have(d/ da)Eq(a) > 0; thus there is aregion was identified in simplified discrete versions of the slave
of >0 whereEy(a)>0 and there can be no acceptable equation of the model discussed in this pajdet].
solution « to the indicial equation in that region.

We shall now use the well known variational formula V. SPECIFIC EXAMPLES

2
Ey(@) = min f dx T<‘9_¢) + (i[¢/(x)]2 A. The simple harmonic oscillator
0 v X 47 . ider i -
The simplest example one can consider is the simple har-
1 monic oscillator with
+ 5(1 - 2a)¢”(X)> «f} ; (64)

AX?
where the minimum is taken over all functions such that ¢(X):7'
Jdx ¢(x)?>=1. Defineg=-min{¢"(x)} and consider the case
where g>0 and letx, be a point where this minimum is From the theory of the preceding section we know that there
obtained. Without loss of generality we takg=0. Now con-  should be no power law behavior p{¢), and although the

(72)

sider the trial wave function problem can be explicitly solved it is instructive to work
14 through the mathematics as formulated in Sec. Ill.
W (X) = <£> exp(— cx?/4) (65) The indicial equation in this case is
2
# N, N
for c large and positive. Using E§64) we obtain - Tﬁf + 4—_)Iff = 5(1 - 2a)f. (73
Tc 1 ’ 2 g 1 . . . .
Eo(e) < a2t 4—T[¢> 0)]*- 5(201— 1)|+0 o) The left hand side of Eq73) is the Hamiltonian for a quan-

tum simple harmonic oscillator of mass=1/2T and fre-
(66)  quency w=\. The energy levels are thus,=(n+3)\ and
comparing with the right hand side of E(.3) immediately
yields that the solutions fo# are «=-n and hence, as pre-
dicted, are all negative. Clearly the slave equation reads

Thus if c>1 and a>c then we haveEy(a) <0. Assuming
the continuity ofEy(«), along with the fact thaE(«) is posi-
tive in a region(0,l) for somel>0, we have shown the
existence ofa” >0 such thaE(a")=0. L
Now it remains to be shown that in the case whé(e) is a=-M+ 1 (74)
concave for some range &f the coefficientv,: in Eq.(48)  and so the equilibrium distribution dfis a & function at the
is nonzero. We recall the boundary conditi#?{x,00=0 fixed pointé=1/\,
which means that for largs Q(x,s) must decay more

quickly than 15 at larges. p(&) = 5(5_ l) (75)
Equation(45) may be written as A

~ ’ . iN ’ 1101
Qlx,9) =~ f dX'Gx.x";5)s~Q(X',5)¢"(x'),  (67) B. The potential =x]
whereG is the Green'’s function obeying We now consider the potential
(Ho +9)G(x,x";8) = 8(x = X'). (68) d(x) = x| (76)
For fixedx andx’ ands>1 we have from Eq(68) Again there can be no power law behavior. The interesting
S(x—x) point about this potential is that the full distribution tan
G(x,x";9) = P (69 pe computed. One can easily solve Rix,s) to obtain

which means that for large

1/2
P(x,5) = % exd- )\(s)|x|]exp[— 2(,85+ %) } ,
~ - 1 i~
Q(x,8) = — ¢"(x) asQ(X’ s) (70 77)
and hence where
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_ B+ (B2+4ps)”

> (78)

INE)
Then after integrating ovex the Laplace transform can be
inverted to yield

(79

p(é) = Bﬁ_i)_

__Pe ] _PB¢
771/2(,3§)3/2 4 Bé;

Notice that the larges behavior is not that predicted by Eq.
(71) due to thes function singularity in¢”(x) atx=0, where

this occurs it_is easy to see that one has a behavior of the
form exp—Avys) but the conclusions stay the same. Indeed,

the simplest cases exhibiting a power law distributioréin
are those wher@’(x) is composed of functions, as is the

case for continuous piecewise linear or quadratic potentials

¢.
C. The piecewise continuous quadratic potential

Here we consider the potential

1
P(x) = 5(|X| -1)*-hx. (80)

PHYSICAL REVIEW E 71, 031103(2005

20 T T . . T

A
\/\/

-4 2 0 2 4
o
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-20

FIG. 2. Graph ofl'(a,8,h) againsta at =1 andh=0. Note
that there is only one strictly positive solution Ega, 3,h)=0.

Numerically solving Eq.(85) shows that we have one
positive roota’, the roota=0, while all the others are nega-

In this case we again expect a power law tail in the distribuive. An example is shown in Fig. 2.

tion of £ The indicial equation in this case is

—T§—2f+(i(x—h—1)2—1(1—2))f—O x>0
X2 47 2 )= '
—T—a2f+(—1(x—h+1)2—1(1—2))f—O Xx<0

ax? 47 2 Y= '

(81)
along with the continuity of atx=0 and the jump condition.

of

O+ C?X

ot
\ IX

)+(1—2a)f(0)=0. (82
o

The solution that decays &g — « is

f(x) = A.D_,(VB(Xx-h=-1)), x

=

=

01

f(x)=AD_ ,(VBh-1-x), x<0, (83)

where D, denotes a parabolic cylinder function of indpx
[15]. Using the jump condition and continuity a0, along
with the identity[15]

, z
D5() = 5D4(2) + Dpua(2) =0, (84)

we find thata obeys the equation
['(e,B,h) =0, (85)

where
T'(a,B,h) = 2JB(a - 1)D_,(- VB(L +h))D_,(- VB(1 -h))
~Dy_o(- VB~ h)D_,(- VB(L +h))

~Dy (- VB +h)D_ (- VB(L-h)).  (86)

At small 8 we can show that
o =18, (87)

while the largeB behavior depends on the valuetofin the
casglh| <1 the system has two local minima and we find that
asT—0 thena’ is given by

a =1+ ;_B{exp{— B(1 +h)%2] + exd - B(1 -h)%/2]}.
Vo

(88)

Here we see that in the zero temperature limit—1. In
addition the asymptotic form foe" [Eq. (88)] tells us that
the coefficientC of the power law tail must behave as

C~ 1/ B exp(— B/2)
2T

in the case whenh=0. This follows from the static
fluctuation-dissipation theorem and the fact that the variance
of x is nonzero ag — 0 whenh=0. Thus although the power
law exponenta” decreases, the coefficient of the power law
component of the PDF is, in this case, tending to zero expo-
nentially quickly. This can be understood physically, as the
excursions into the region whegg is concave are into re-
gions of high energy, whose Boltzmann weight is exponen-
tially suppressed.

In the casgh|>1 there is only one local minimum and
we find asT—0 that

(89)

*
a =1+

5 (90)

The predictions obtained by our method may be con-
firmed by numerical simulations. In the numerical simula-
tions one needg’ to be continuous and so the cusp in the
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TABLE II. Exponente” evaluated from histogram @f numeri- A, exp(Balx|/2) + A_exp(- Balx|/2), x| <1,
cally generated for the potentiglof Eq. (80) regulated at the origin f(x) = B /2 ~1
with €=0.05 compared with analytical prediction of E®5) for exp(= BIx|/2), X =1.
various values ofr and ath=0. (96)
T & (numerics o (predicted Continuity atx=1 then gives

—_ = + —
2.0 2541) 2 560 B exp(— B/2) = A, exp(Bal2) + A_ exp(— Bal2), (97)
1.0 1.614) 1.612 allowing for the elimination of the variablB. The vector
0.5 1.221) 1.191 (A+>
u= 98
0.4 1.121) 1.121 A (98)
is then determined biMu=0, where

potential atx=0 needs to be regularized. We take a small W 1-a
interval[ e, €] where we setp’ (x) =(e—1)x/ e+h; this choice M = ( )
ensures that'(x) is continuous and in the limie—0 we expifa/2)a(l+a) exp- pa/2)(a(l+a)-a)
recover the potential of Eq80). Simulation results are per- (99

formed with e=0.05 and compared with the analytical result
for the potential¢ of Eq. (80). A comparison of the expo-
nents obtained from the numerical simulation and from solv
ing Eq. (85 for the caseh=0 is shown in Table II; the
agreement is excellent and the deviation is compatible with it . 1

being of ordere=0.05. Similar agreement is found wheiis @ =1+ (1 +a)[expBa) - 1]

o =
nonzero.

We see from Eq(100) thato” is positive and greater than 1
in the region wherep has a concave component as predicted
by the general theory. In the regi@®> 0 we find that

(

The possible values of the exponentare then determined
by the existence of a solution such thet O, that is to say,
detM =0, which yields the solutiom=0 or

(100

D. The W-shaped potential

Here we consider the W-shaped potential given by

1
l1+——— asp—0,
ax-1, [x=1, . al+a)p
P(x) = | [ (91 a = (109
IX-1, |x=1. exp(- 5a)
1+ m aSB — 0,
The second derivative of the potential is thus given by Ny
In the regiona<-1 we find
#'(x)==2a8(x) + (1 +a)8(x~ 1) + (1 +a)d(x + 1), ( 1
(92 | v 0
a = (102
and so from the general theory of Sec. Il we expect a power 1 1 asfB— .
law behavior where@>0 anda<-1. The indicial equation L |1+4
Is given by We see in the casa<-1 in the limit T—0 thata" > 1;
2 2 this must be the case from the static fluctuation-dissipation
-T—f+ a—f =0 |x =1, relation: here there is only one minimum and we therefore
axe AT have
BfdxXexp-gBlallx) 2T
# 1 BOC)g = ~—, (103
ST5f+ =0 X =1, (93) Jdxexp(-Blallx)  a
and hencedé)g has no divergence a— 0.
along with the jump conditions An interesting point emerges here. If the variancex i§

nonzero in the limitT— 0 the static fluctuation-dissipation
theorem tells us that the coefficieaf —1 in this limit.

J
- ZT&f +a(l-2a)f(0)=0, (94)  However, even if the variance aftends to zero ther” may
0 still tend to 1 in the zero temperature limit. This is seen in the
) case of the potentiab(x) =(|x| - 1)2/2—hx where the minima
d d 1 _ are only degenerate &=0. The average value of stays
T[a_xf " --(?—Xf 1_1 - (5 - “>(1 *a)f(1)=0. (99  fpjte pecause the prefactor, denoted in this papeChyf

the power law component of the PDF éfs tending to zero
The solution of the indicial equation, which decays assufficiently rapidly. In the cases we have examined here it
[X| — 0, is seems that” — 1 in the zero temperature limit when there
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are at least two local minima of the potenti@l It seems high temperatures and decreases on decreasing the tempera-
possible therefore that the zero temperature behavior of thieire. As the temperature is reduced the higher order moments
exponentx” encodes geometrical or topological properties ofof the slave¢, diverge and ultimately the variance of the
the potentialg. slave may diverge, thus rendering it a poor estimator for the
susceptibility. This pathology in the slave statistics had been
observed in Langevin simulations of spin and quantum sys-
tems[2,3]. A number of exactly soluble cases were analyzed
We have analyzed the equilibrium distribution of a slaveand the results confirmed by numerical simulation.
variable & which is the estimator of the susceptibility of a  In future work it would be interesting to generalize our
one dimensional Langevin process Even though the equi- results to higher dimensional systems, notably interacting
librium statistics ofx; are such that all moments are finite systems where phase transitions may occur. The temporal
(for a sufficiently confining potentiglthe probability density evolution of the PDF of the slave is also worthy of future
function of the slavet can have power law tails character- study. It would be interesting to know how quickly the tails
ized by a temperature dependent exponent. This power lawf the slave’s PDF fill out and after what time it becomes
behavior is present when the potenijahas a concave com- equilibrated. One would also like to understand over what
ponent. The origin of this power law can be understood fromime scale temporal averages need to be carried out in order
simple qualitative arguments. The behavior of the power lawto numerically verify the static fluctuation-dissipation rela-
exponent can be analyzed in the steady state using th@n. Finally the analysis developed here could prove useful
Fokker-Plank equation for the equilibrium joint probability in the analysis of similar slave variables occurring in Lange-
density functionP(x, &) for (x;,&). The exponent is large at vin systems.
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